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ON DUAL APPROXIMATION PRINCIPLES AND
OPTIMIZATION IN CONTINUUM MECHANICS
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Department of Mathematics, University of Reading
(Communicated by R. Hill, F.R.S.—Received 10 January 1969)
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A unified expression of some of the boundary value problems of continuum mechanics is developed.
A central role is given to the notion of a Legendre dual transformation in displaying the simple
analytical structure of each problem considered. A systematic method of deriving reciprocal varia-
tional principles is described. General boundary value problems governed by inequalities as well
as equations are then considered. Convexity of the dual functions related by the Legendre transforma-
tion is shown to be the basis of uniqueness theorems and extremum principles. Attention is drawn to
the relevance of the literature on mathematical programming theory. Many examples are given,
involving new or recent results in elasticity, plasticity, fluid mechanics and diffusion theory.
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1, INTRODUCGTION

This paper is an exploration of some of the common ground which evidently exists between
continuum mechanics and mathematical programming or optimization; and also of the problem
of finding a unifying expression of some of the special boundary value problems of continuum
mechanics.
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320 M.J.SEWELL

Methods of linear and nonlinear programming have been developed rapidly in recent years,
and a convenient source of many references to the detailed work in nonlinear programming is
the symposium of papers edited by Abadie (1967). Rationalization of the approach to constrained
minimization problems in various previously disconnected areas has recently been demon-
strated by Canon, Cullum & Polak (1966). Much of the stimulus for such developments in mathe-
matical programming has been found in the fields of control theory and econometrics in the
wide sense.

By contrast, apart from certain topics in the theory of structures, there seems to have been
little awareness that the existence of such a highly developed body of theory on optimization
might be of value in the search for approximate solutions of the boundary value problems of
continuum mechanics. Reasons for this situation are not hard to find. The ‘constraints’ of
continuum mechanics, by which we mean here all of the governing equations and boundary
conditions, usually have the form of equalities rather than inequalities, whereas it is inequalities
which characteristically appear in programming theory. Also, the optimization technique in
mechanics is often facilitated by the fact that the required extremum (i.e. minimum or maxi-
mum) is known to be a stationary extremum in a certain class, so that classical variational methods
are available. Moreover, there are problems of continuum mechanics whose solutions have a
variational characterization, but no extremum property; and of course sometimes no variational
principle exists either.

We remark that the first two of the foregoing three reasons should not of themselves be regarded
as disqualifying an approach via programming theory, since it is common practice there to re-
place any equation M = 0 (say) which happens to occur by the two inequalities M > 0 and
— M > 0. And in any case boundary value problems of continuum mechanics do sometimes in-
volve inequalities, as we illustrate below in various contexts. It is for future investigations to
show whether the procedures which have been developed in the specialist optimization literature
can be applied systematically and with profit to those problems of continuum mechanics which
admit extremum principles (linear programming in plastic limit analysis is one existing example,
cited in §3 (c) here); and in particular to show whether any improvement over existing varia-
tional techniques is afforded in the special cases when the extrema are stationary.

The third reason above takes one further from the optimization context towards other types
of approximation methods such as orthogonalizing or averaging approaches which we shall not
discuss here (cf. Hill (1963 ) and Whitham (1967, §4) for discussions in the contexts of solids and
fluids respectively). ‘

The genesis of the present investigation was in a comparison of papers by Moreau (1967)
and Hill (1956). Moreau examines the boundary value problem in perfect fluid theory described
at the end of § 6, and he describes the extremum principles there as infinite-dimensional quadratic
programming problems. Also,in the holonomic case of the problem of § 4, Moreau (1966 a) remarks
that the Kuhn—Tucker 1951 theorem of programming theory can be used to get one of the ex-
tremum principles. By contrast, Hill (1956) proposes a systematic procedure for the construction
of uniqueness theorems and extremum principles in different branches of continuum mechanics.
Hill’s proposal gives a central role to the notions of convexity and duality, and was apparently
independent of work in the programming field—which is now well known to be intimately con-
cerned with these concepts.

In §2 here these threads are drawn together in a development from first principles, slanted
towards mechanics (continuum or discrete), which enables us to avoid an excursion into the
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specialized jargon of programming theory. Such an approach seems necessary since few mathe-
maticians are widely experienced in both fields. The roles of duality, adjointness in the governing
equations, variational principles, convexity, unilateral and bilateral conditions, uniqueness
theorems, extremum principles and passive variables are explored in sequence. A simple matrix
notation is used, and one feature is a schematic representation of the permitted inequalities.
Several distinct types of boundary value problem are brought within the same analytical frame-
work.

The range of the general theory of § 2 is exemplified in § 3 (see table 1 particularly). Some known
results for elastic and plastic solids and perfect fluids, most of them very recent, are summarized.
New results suggested by the analytical structure of §2 are proved in a variety of contexts in
§§3 to 6, and also in § 2 itself. In particular the systematic approach there to reciprocal variational
principles via a free variational principle seems far from well known, and the discussion of § 2 (vii)
(related to the diffusion equation, and including the construction of a convex function from a
saddle surface) is original.

Parts of the theory presented here can be approached via the notion of function-space and the
‘method of the hypercircle’ (when variational principles can be strengthened into extremum
principles) or the ‘pseudo-hypercircle’ (when they cannot). But we have not followed this route,
preferring the more direct task of seeking a unifying analytical structure (§2). The contrast
between the two approaches is reinforced by the noteworthy fact that there sems to be no mention
in Synge’s book (1957) of the notion of convexity.

2. ANALYTICAL STRUCTURE

In this section we explore the basic analytical structure which underlies the type of results
which we shall exemplify in this paper in a wide variety of problems. In doing this we deliberately
use a non-commital notation which is not too closely identified with any one particular field of
application. This facilitates an overall view. We aim to give a very simple and easily intelligible
account of some of the main theoretical features, although we do not attempt to cover all variants
of detail.

(i) Legendre dual transformation

A given continuous scalar function
Y = ¥(y,1,) (2.1)

of nvariables y, (¢ = 1, ...,n) and m variables u, (@ = 1, ..., m), having continuous first derivatives,
is used to relate to them another set of z variables x; ( = 1, ..., n) by the transformation

x; = 0Y[0y;. (2.2)
This transformation is assumed single-valued at each given set of values of the #,, and it is re-
versible, at least locally, if its Jacobian exists and is non-zero, i.e. if

%Y
+ 0. 2.3
, Y0y (2:3)
The inverse may then be written as  y, = 0.X/ox; (2.4)
in terms of a scalar function X = X(x;u,), (2.5)

which is defined by inserting the inverse of (2.2) into the right-hand side of
X= ’L'yi_Y‘ (2'6)

29-2
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322 M.J. SEWELL

(It will be understood here and later that summation is to be carried out over the full range of
values of any repeated Latin or Greek suffix, and that an isolated suffix can take each of its values
in turn.) This Legendre dual transformation is of course completely symmetrical, in that we could
have started with (2.5) as given and arrived at (2.2) when (2.3) holds via a definition (2.6) of Y.
The u, play the role of passive variables in the transformation, and have the property

oX oY

in terms of derivatives of (2.5) on the left and of (2.1) on the right.

(i1) Governing equations
Now suppose that we are dealing with a problem whose equations impose certain further

conditions on the y,, x, and u,. We consider first the case in which these further conditions fall into
two groups of m and z conditions expressible, for example, as

L%, = —0Y|ou, (2.8)
and y; = Ly u, (2.9)

respectively. Here the L; are the elements of an assigned matrix or linear differential operator
L, and the L,, are the elements of its adjoint operator L. The derivatives in L and L are with
respect to a field of £ independent variables 7y, ..., 7;, spanning the space in which the problem is
defined (for example, £ = 4 includes the case of one time variable with three Euclidean spatial
or material coordinates). The x;, y; and , are the dependent field variables in such a case. Actu-
ally the x; and y;, may arise not only as row or column matrices, but also as rectangular or square
matrices (e.g. as stress or strain) having a total of z elements. Even the u, and 0Y/ou, might arise
as rectangular matrices having a total of m elements. We include such rearrangements by sup-
posing that L and Z can also be rearranged to allow (2.8) and (2.9) to be rewritten in the symbolic
form Lx=s with s,= —0Y/ou, (2.10)

y = Lu, (2.11)

where juxtaposition implies operation according to the rules of matrix multiplication. Legendre
transformations having passive variables different from those which appear on the right of (2.9)
and (2.11) are considered later.

The adjoint property is expressed here by the requirement that, for every « and x,

f(uLx—x.liu) dr = — [uNxdo (2.12)

for any £-dimensional region 7 with bounding surface o, where N is a matrix operator which is
assigned on o (and is independent of # and x). The integrands in (2.12) are scalars evaluated by
the rules of matrix multiplication and contraction. The context will show where the transposes of
u and x are required, so that separate notation for these transposes is not introduced here. For

example, when Uy Lyyx; — x:Lipu, = —div F(u, x) (2.13)

oot T
for every u and x, where F is a 7-space vector bilinear in # and x and div indicates divergence in

7-space (cf. Lanczos 1961, equation (4.17.2)), then (2.12) is a consequence of Poincaré’s general-
ization of the divergence theorem (see Ericksen 1960, p. 816), and N represents the normal to o.
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We shall later confine attention to cases in which N involves no summation. This is illustrated
by the cases when x is rectangular, and when m = 1, so that

uNx = u, Nyx;, or uNx=uN;x; (2.14)
respectively.
The case when L and L themselves are merely matrices is included by formally setting & = 0,
and the right-hand side of (2.13) disappears. The adjoint is then just the transpose, so that

ziac = Lam: (2.15)

replaces (2.13) and (2.12), and can be inserted into (2.11). Of course, in writing down (2.8)
and (2.9) we have destroyed the symmetry between the x; and y; which (when (2.3) held) we
had up to that point, and this will be reflected in applications requiring particular interpretations
for the x; and y,. One interpretation illustrated in §3 is when (2.10) and (2.11) represent equili-
brium equations and strain-displacement equations respectively.

(111) Free variational principles

We define next a ‘canonical action’ functional

Alx,y,u, Lx] = [[xy —uLlx—Y (y,u)] dr. (2.16)

In view of (2.12) the first variation of this for unrelated small variations dx, 0y and du is
84 = [[8x(y — Lu) + (x—0Y|dy)dy — du(Lx —$)] d7 + [ uNdxdo. (2.17)
The variational principle 04— f uNdxdo =0 (2.18)

will therefore yield (2.2), (2.10) and (2.11) as natural conditions without making any prior as-
sumption about the relation between x, y and u. We could therefore use (2.18) as a starting-point
from which to deduce (2.2) (instead of assuming it), and then add restrictions such as (2.3) or
the convexity (mentioned below) subsequently. Various specializations and generalizations
of (2.18) are possible, as the sequel will show. An alternative to (2.16) would be to begin with the
integral of xy —xLu— Y (y,u) over 7. In coupled problems, such as the air/membrane vibration
problem referred to in §3(%), 4 can be a sum of integrals over regions of differing dimensions.
The assertion (2.18) is a free variational principle formulated so that all of its natural conditions
apply throughout 7, and therefore none of them apply only on the boundary o. There now arises
the question of what boundary conditions on the x and u does the form of u Nx allow boundary
integrals to be inserted on the right-hand side of (2.18) so that the result takes the more viable

form 8(A—B) = 0. (2.19)

Here in general one would expect B to be an integral over the (£— 1)-dimensional boundary o,
and of most interest are the forms (such as (2.14)) of u Nx which allows the boundary conditions
on ¢ to emerge as natural conditions on o of (2.19) (over and above those in 7 of (2.18)). The most
common and easiest case in which to establish (2.19) from (2.18) is when certain orthogonal
linear combinations of « (and/)or x have assigned values at every point of ¢. For example,
suppose (2.14) or a similar form of #Nx holds, and

u=h onapart o, of o, (2.20)
and Nx =T onapart o, of o (2.21)

for assigned quantities 2 and T, where o, + 0, = o to begin with.
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324 M.J.SEWELL

These boundary conditions satisfy and also emerge from the principle
04 — [uNdxdo = — [(u—*h) N&xdtfu+f3u(Nx— T)do,. (2.22)
This is obtained by augmenting (2.18) in an obvious way which also achieves the alternative
form 3[4~ [u(Nx— T)do,— [hNxdo,] = 0, (2.23)

thus exemplifying (2.19). Such simple boundary conditions therefore take care of themselves
(other considerations apart), at least on finite boundaries. Prescribed displacement and/or
surface load typify this case in solid mechanics; other examples may be inferred from § 3.

It can happen, however, that a more complicated relationship between u and x is assigned on
part of 0. Such a relationship may be nonlinear and it may also involve certain 7-derivatives of u
and x. The known criteria for the existence and determination of B in such cases seem far from
complete. However, some conclusive information is contained in a general study by Sewell
(1967) of nonlinear configuration-dependent loading, following upon some sufficient conditions
obtained by Hill (1962) in the linearized problem. Uniform normal pressure loading maintained
through a large deflexion of the loaded surface is a principal nonlinear example in which B can
exist in this more complicated case (Sewell 1967, equation (89); 1965, equation (32)).

Suppose then that (2.19) is of such a form (e.g. (2.23) with (2.14)) that all the governing equa-
tions in 7 and the boundary conditions on o are recoverable from it as natural conditions after
unconstrained and independent small variations of ¥, y and u are applied. Then reciprocal or
dual variational principles are obtainable from (2.19) (as well as from (2.18)) in various ways. The
general procedure requires that some (or none) of the natural conditions are assumed to hold
from the outset, and then that complementary sets of what remains of these original natural
conditions be imposed in turn on (2.19) before the variations are carried out. A pair of constrained
variational principles is obtained whose natural conditions complement each other in the sense
that, when taken together with the overall constraints applied at the outset, they make up the
entire set of the original natural conditions of (2.19) itself. A specific new illustration of this pro-
cedure in compressible fluid mechanics is given by Sewell (1963 a). Of most interest are likely to
be those reciprocal principles which verify that complementary extremum principles are analytic
(when extremum principles exist at all), or at least those which involve variations among only
one set of variables in each individual principle. To get extremum principles requires more
specific assumptions about Y than we have made hitherto.

(iv) Convex functions

Hill has proposed (1956) a general automatic procedure for the construction of uniqueness
theorems and associated extremum principles in continuum mechanics, and it is an extension
of this procedure which we require next. Broadly speaking this procedure requires that once the
governing equations have been cast into the form (2.2) with (2.10) and (2.11), the function ¥
should be a convex function of the y, in some suitable sense.

We require in §§ (v) and (vi) below the fairly common case in which ¥ depends only linearly
on the u,, with coefficients —s, which are assigned and therefore independent of the y;, so that

Y(yiﬁ ua) = U<y@) — S Uy (2'24)

where U(y,) is an assigned function of the y, alone. The interpretations of (2.10) in § 3 show that
such s can often represent assigned body force. Then the 0Y/dy; are independent of the u,.
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We shall use the prefix A applied to a function to indicate the ordered difference of the function-
values corresponding to any two distinct values of its argument. Suppose that the general
Y(y;,u,) has the property that, for every fixed « and any Ay # 0,

[[AY - (2Y|oy) Ay] dr > 0, (2.25)
where the matrix 8Y /oy is evaluated at the y-point corresponding to the ‘minus member’ of the
difference Ay( = ‘plus member’ less ‘minus member”).

There is no loss of generality in reversing the roles of the two members of Ay in (2.25), and if
we do this and add the result to (2.25) we get

- [A(aY/ey) Aydr > 0. (2.26)
The second mean value theorem applied to the present ¥ shows that for every fixed u
oY *Y
—— Ay, = 1Ay. Ay, ——
AY o Ay, = $Ay; Ay, 320y, (2.27)

where the bar indicates evaluation of these second derivatives at some y-point between the two
members of Ay. If these two members are separated by a surface of discontinuity of the second
derivatives, the bar might have to imply a value within the range of the ‘jump’ at the discon-
tinuity. It follows that, if gy

——— 1s positive definite at every point 2.28
Byedy, ©P y point, (2.28)

then Y(y,,u,) is a convex function of the y; at each ,. For (2.27) with (2.28) implies that the left-
hand side of (2.27) is positive for every Ay # 0, and the geometrical interpretation of this is that
the surface (2.1) lies entirely on one side of its tangent plane at any y-point (for each fixed «), which
illustrates the convexity. Condition (2.28) (which incidentally implies (2.3)) is therefore suffi-
cient for convexity (defined here by requiring (2.27) to be positive for every Ay = 0), but is
somewhat stronger than necessary—for example, isolated zeros of 92Y/dy, dy; could be admitted.
In any case itis the definition of ‘ overall convexity”’ (2.25) which will be adequate for our purpose,
and this could permit (2.27) to be > 0 and even < 0in part of 7 provided itis > 0in ‘most’ of 7.
A discontinuity of 92Y /9y, dy; along the join through the origin of two different quadratic functions
Y with continuous slope is a fundamental property of, for example, plasticity theory, where
(2.2) represents the constitutive equations for the boundary value problem of quasi-static in-
finitesimal displacement (asillustrated in § 3 (4)). Hill gives a proof (1961 4, § 4; 1962, § 5) indicating
that (2.26) implies (2.25) for continuous Y with continuous first derivatives and piecewise con-
tinuous second derivatives, so that (2.25) and (2.26) are completely equivalent for such functions.
All the properties of Y stated in this paragraph ‘for each fixed «’ also apply to U(y;) without such
qualification about « being required—such properties of U also ensue from a widened definition
of convexity in which the restriction Az, = 0 is dropped from (2.25).

When (2.2) and (2.3) hold, so that the full Legendre dual transformation is available, use
of (2.2), (2.4) and (2.6) in the integrand of (2.5) shows that (2.25) is then equivalent to

[IAX— (6X[ox) Ax]dr > 0 (2.29)

for every fixed « and any difference Ax # 0. Here again the matrix X/« is evaluated at the x-
point corresponding to the ‘minus member’ of the difference Ax. Thus the overall convexity
of either function generating the Legendre transformation implies the overall convexity of its
dual function. An alternative to (2.29) is

[A(6X/ox) Axdr > 0, (2.30)
by the same argument which relates (2.26) to (2.25).
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In the special case (2.24) we are here dealing with a function
X(x'i’ uoc) = [JC(x'L) +sacuw (2'31)

which is linear in the u, with assigned coefficients s, = 0X/du, independent of the x;, and where
U, (x;) isan assigned function of the x; alone. Equations (2.29) and (2.30) also hold with X replaced
by U, and the u-qualification dropped. Equation (2.31) follows from (2.24) with xy — U = U,.
It may of course happen that we are given a function (2.5) satisfying (2.29) but for which (2.4)
cannot be inverted, so that ¥ in the form (2.1) does not exist. In that case we can rewrite (2.29)

in the form f[A (xy — X) —xAy]dr > 0, (2.32)

where we have used (2.4). Clearly (2.32) would become (2.25) if the transformation (2.4) were
reversible.
(v) Uniqueness theorems under bilateral and unilateral conditions

Now consider the difference Ay of any two y-distributions which are representable in the form
(2.11), so that such Ay = LAu. These have the property that

[AxAydr = [ AuLAxdr + [AuNAxdo (2.33)

by (2.12). Assuming (2.2) and (2.26), a reductio ad absurdam argument shows that there cannot
be more than one solution for y of any boundary value problem whose definition is completed by
conditions which would make the right-hand side of (2.33) non-positive. As an example, one
such problem is completed by adding (2.10) (with assigned s) in 7 and the boundary conditions
(2.20) and (2.21) on o. For this problem each integral on the right of (2.33) would have to be
actually zero. This problem is completed by ‘bilateral conditions’ (equalities), but uniqueness
of y also follows when the problem is completed by ‘unilateral conditions’ (inequalities) of a
certain type on either or both of r and o, or by a suitable combination of the two typesof conditions
on different parts of r and of o. The transition from bilateral to appropriate unilateral conditions
can be graphically illustrated schematically (recall the matrix multiplication and contraction
to inner products in (2.33)) as in figures 1 and 2. Figure 1 (a) represents the matrix equation
(2.10) with assigned s. Figure 1 () represents unilateral conditions of the type

Lx > s, (2.34)
and u >0, (2.35)
with u(Lx—s) = 0. (2.36)

(A matrix inequality refers to every element of the matrix.) Such inequalities are illustrated by
the unilateral internal kinematical constraints analysed in §§4 to 6. Figure 2 represents a replace-
ment of (2.20) (figure 2(4)) and (2.21) (figure 2 (a)) on at least a part o, of the original o, + o, by
unilateral conditions which have the properties

Nx—-T>0 (2.37)
and u—h >0, (2.38)
with (u—h) (Nx—T) = 0. (2.39)

Such unilateral surface constraints are illustrated by the passive constraints described in §3.
Itis easy to show that (2.34) to (2.36) make the 7-integrand in (2.33) non-positive, and that (2.37)
to (2.39) make the o-integrand in (2.33) non-positive on o,. Therefore, for example, a boundary
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value problem requiring the solution of (2.11) and (2.34) to (2.36) subject to (2.37) to (2.39)
cannot involve more than one y-distribution when (2.2) and (2.26) hold. The x-distribution is
then unique by the single-valuedness of (2.2) (which does not contain passive variables in the
present problem). But the u-distribution will not be unique if the boundary conditions do not
exclude trivial non-zero solutions of Lu = 0 (however they often do, as in the Dirichlet problem of
potential theory, and in the exclusion of rigid-body solutions to the equations of classical elasticity
by suitable boundary constraints on the displacement). The same conclusions follow if figures 1 ()
and/or 2 (¢) enclose the opposite quadrant, for which both inequalities (2.34) and (2.35), and/
or both (2.37) and (2.38), are reversed.

~Lx =Lx

S .
[ .. -
/ /

() (2.10) with assigned s (b) unilateral form of (a)

Ficure 1.

/] [/

(¢) Nx = Ton o, (b) u=hon o, (¢) unilateral on o,

=Nx

Ficure 2.

An alternative approach to the uniqueness question can exploit (2.30) instead of (2.26).
Consider the difference Ax of any two x-distributions which satisfy either (2.10) or (2.34) to
(2.36). Then the associated Ay obtained via (2.4), and any Au (satisfying (2.835) and (2.36) if
these are applicable) have the property that

[AxAydr < [AxA(y—Lu) dr + [AuNAxdo (2.40)

by (2.12) and (2.34) to (2.36). Then assuming (2.30), a reductio ad absurdam argument shows that
there cannot be more than one solution x of any boundary value problem whose definition is
completed by conditions which make the right-hand side of (2.40) non-positive. We do not pur-
sue here the modification of (2.11) to unilateral conditions which this alternative suggests. The
comparative strengths of criteria of uniqueness based on (2.26) and (2.30) depend on the par-
ticular problem concerned. A comparison for the classical elastic solid subject to bilateral equili-
brium, strain-displacement and boundary conditions has been made by Hill (1961 4). In practice
the definitions (2.25) and (2.29) of overall convexity may often be weakened without serious loss.
When all the conditions are bilateral, for example, we may require (2.25) to hold not for all
Ay + 0, but for the smaller class of all Ay + 0 computed from the solutions of (2.11) and (2.20);

30 Vol. 265. A.
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and we may require (2.29) to hold not for all Ax % 0, but for the smaller class of all Ax % 0 com-
puted from the solutions of (2.10) and (2.21).

(vi) Extremum principles

The unique solutions which are so guaranteed by (2.26) or (2.30) can be characterized by
extremum principles which provide upper and lower bounds to the value of a certain scalar
quantity in the actual solution. These extremum principles follow from appropriate interpreta-
tions of the alternative statements of overall convexity contained in (2.25) and (2.29) (or (2.32)).
In the following illustrations we regard the ‘minus members’ associated with the differences in
(2.25) and (2.29) or (2.32) as having al/ the properties of an actual solution, and they will be
undesignated (in contrast to the ‘ plus members’ which are designated below by either * or 1). To
illustrate the derivation of extremum principles the properties of an actual solution will now be
taken as follows: either (2.10) or (2.34) to (2.36) in 7 (with assigned s), together with (2.11) in 7;
either (2.2) or (2.4) or both in 7; and o = o, + 0, + 0, where (2.20) holds on the new o, (2.21)
on the new o, and (2.37) to (2.39) on o,.

With these data and Ax = ¥* — x inserted into (2.29) we find with the aid of (2.12) that, since
AX = A(U,+ su) = AU, by hypothesis, (2.29) may be written

[AUdr — [ANAxd (0, + o) > [u(La* —5)dr + [(u—h) (Nx* - T) do,. (2.41)

Here x* is an approximate solution required only to satisfy (2.10) or (2.34) in 7, (2.21) on o,
and (2.37) on o,. Hence the righthand side of (2.41) is zero when the conditions in 7 and on o are
all bilateral, and non-negative if they are partially or wholly unilateral. We therefore have the
extremum principle

[U(x*) dr — [aNx* d (0,4 0,) > [Uy(x) d7 — [hNxd (0, + 7). (2.42)

It is worth noting that the statement (2.42) of this principle is the same regardless of whether it is
(2.10) or (2.34) to (2.36) which holds in 7. (There is no connexion between the two uses of a
subscript ¢ in U, and o).

With the same data for an actual solution and Ay = y" —y inserted into (2.32), we find with the
aid of (2.12) and the hypothesis AX = AU, that (2.32) may be written

[A(xy — U= su) dr — [ TAud(0p+0,) > [u'(Lx—s)dr+[(u' —h) (Nx— T)do,.  (2.43)

Here y* = Lu' is an approximate solution required only to satisfy (2.11) (and (2.35) at points of
7 where the unilateral conditions apply) in 7, (2.20) on o, and (2.38) on o,. Hence the right-
hand side of (2.34) is zero when the conditions in 7 and on o are all bilateral, and non-negative
if they are partially or wholly unilateral. We therefore have another extremum principle by
dropping the right-hand side of (2.43), and when in addition (2.4) is reversible so that U = xy — U,
this may be written (and then alternatively obtained from (2.25)) as

J'[su— Uly)] dT+fTud(o‘m+¢rc) > f[su"—~ Uy] d7'+fTu"d(0'w+ o). (2.44)

Itis worth noting that the statement (2.44) of this principle is also the same regardless of whether
it is (2.10) or (2.34) to (2.36) which holds in 7.
If we denote the minimum which the actual solution provides in (2.42) by m1n and the
maximum which it provides in (2.44) by ma}rx it is easily shown that

min = max — [ATdo,. (2.45)

z* ut
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Therefore the extremum principles are complementary, in the sense that they provide upper and

lower bounds to the same quantity in the actual solution, whenever min > max, that is whenever
z* ut

[kTdo, < 0. (2.46)

The solution values themselves of the bounded quantities coincide when equality holds in (2.46).
This happens whenever the matrices 2 and T are orthogonal to one another, in either a pointwise
or an overall sense, on the part o, of the boundary where unilateral conditions are specified;
and in particular where 2 = 0 or 7" = 0 on o, or when o, = 0 (the last case permits only the bi-
lateral conditions on o).

When all the conditions are bilateral both extrema are analytic. This is indicated by the right-
hand side of (2.27), which suggests that what has been given away to produce the inequalities in
(2.25) and (2.29) and therefore in (2.42) and (2.44) is of second order in the differences Ay and
Ax (supposed small for this purpose). It can be proved from (2.23) by applying the procedure
for deriving reciprocal variational principles which has already been described. We have only
to impose (2.2) and (2.3), and then either (2.11) and (2.20) to give

8 [[sut = U(y")]dr + [Tu'do,} = 0,
or (2.10) and (2.21) to give 8{JUc(x*) dT—IﬁNx*dGu} = 0.

When the conditions are partly unilateral an extra amount represented by the right-hand sides
of (2.41) and (2.43) is given away to get the extremum principles. In the absence of a guarantee
that these extra amounts are not of first order in Ax or Au respectively, we are not entitled to
suppose that the extrema are stationary when unilateral conditions are present.

(vii) Passive variables occurring nonlinearly

We now drop the restriction (2.31) that X(x,,u,) depends only linearly on the #,, and admit a
general dependence on all the variables in (2.5). We wish to discuss an example in which we sup-
pose from the outset that the governing equations of the problem in 7 are

Lx = 0X/ou, (2.47)
Lu = 0X|ox (2.48)

in matrix form (an explicit example is L,;x; = 0X/ou,, L,,u, = 0X/ox;). These equations are
deducible from the definition (2.4) with (2.11), and (when the Legendre transformation begin-
ning with (2.5) is reversible) from (2.7) with (2.10). They canstill be postulated without assuming
that (2.4) are reversible, and they can be regarded as derivable from a form of (2.18) in which

instead of (2.16) we use Alx,u, Lx] = f[X(x, u) — ul5] dr. (2.49)

Reciprocal variational principles can be obtained by choosing # to be such that (2.47) is satisfied for
all x (which can certainly be done if [02X/9u, dus| + 0), whence 0 (X —udX/ou) d7 — [uNSxdo = 0
implies (2.48) from the coefficient of dx alone; and, on the other hand, by choosing x to be such
that (2.48) is satisfied for all # (which can certainly be done if |02X/0x;0x;| + 0, which also ensures
that the original Legendre transformation is reversible), whence Bf(X —x0X|ox)dr + f duNxdo =0
implies (2.47) from the coeflicient of du alone.

To strengthen these principles into complementary extremum principles it is sufficient that
(apart from the question of boundary conditions) the function X(x,«) shall have the following

30-2
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properties. For the first extremum principle the function X —u 0.X/du of x and Lx which is obtained
via the inverse of (2.47) must be convex (or concave) with respect to these variables. It may be
shown that for #ius function the expression upon which the definition of convexity is based (a
generalization of the integrand of (2.29)) may be written

AX-QAZ Ax — 24
ox |_

E» Ay (2.50)

+

in terms of the partial derivatives at x_ and x of the function X (x,#) as originally given, where
the prefix A denotes the difference of quantities associated (via (2.47)) with the points x_ and x_.
in the order typified by Ax = x, —x_. So that the above-mentioned function of ¥ and Lx is convex
(concave) when (2.50) is positive (negative) for every distribution of Ax and LAx which are not
all zero, in which event the first variational principle may be strengthened to an extremum
principle for suitable boundary conditions. Likewise the second extremum principle requires
that the function X —x9/Xox of u and Lu obtained via the inverse of (2.48) must be concave (or
convex) with respect to these variables. It may be shown that for ¢kis function the expression upon
which the definition of convexity is based (a generalization of the left-hand side of (2.27)) may

be written ox

AX_?;E

Ax—~aiY' Au (2.51)
+ ou |_

in terms of the partial derivatives at #_and «_ of the function X (x, «) as originally given, where the
prefix A denotes the difference of quantities associated (via (2.48)) with the points »_ and «, in
the order typified by Au = u, —u_. So that the above function of  and Lu is concave (convex)
when (2.51) is negative (positive) for every distribution of Au and ZAu which are not all zero.
From this the second variational principle may for suitable boundary conditions be strengthened
to an extremum principle complementary to the first one in that it provides a lower (upper)
bound to the quantity bounded above (below) by the first extremum principle.

When the original function X(x;, u,) is quadratic with diagonalized second degree terms it is
obvious that the above two requirements of convexity and concavity imply that the surface
X = X(x;u,) must itself represent a saddle surface convex (or concave) with respect to the x;
and concave (or convex) with respect to the #,. In such a special case, for which X is given by
(3.25), Arthurs (1967) derives upper and lower bounds for the absorption probability associated
with neutron diffusion in solids, for the case of a uniform isotropic source within 7.

When ecither of (2.50) and (2.51) is always positive (or always negative) we can exchange the
role of ‘plus’ and ‘minus’ members and add, giving (e.g. from (2.50) when negative, or from

(2.51) when positive)
Aul\ i)—{)—AxA ox > 0. (2.52)
ou ox
If we now suppose that there are at least two distinct possible solutions of (2.47) and (2.48)
with differences Ax and Au, we see from (2.12) that the boundary conditions would have to
tisfi
satsty [AuNAxdo < o, (2.53)
Uniqueness therefore follows by reductio ad absurdam if the boundary conditions actually make the
surface integral in (2.53) positive or zero (it is zero in the neutron diffusion problem. Arthurs

does not mention the uniqueness question). ,
Since this paper was completed, Pomraning has published (1968) a generalization of Courant
and Hilbert’s notion of involutary and canonical transformations of variational problems.
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Many of his equations may be identified with those here (e.g. his (2) and (20) are the dual ex-
tremum principles given after (2.49)). The more straightforward development of the present
§ 2 still seems preferable for the class of problems envisaged in § 3, although Pomraning’s example
of a particle transport problem in reactor physics illustrates the role of integral operators. He
quotes an example in which ‘exact’ calculations of a quantity having known upper and lower
bounds give a result which (owing to errors in numerical integration) fall outside the bounds.

(viii) Additional passive variables

Finally we consider the more general Legendre transformations in which passive variables
other than the u, appearing in (2.11) are present. Suppose, for example, that # is a matrix
consisting of extra variables over and above those already considered, and that u fogether with its
7-space gradient Gu are present as additional passive variables in (2.1) and/or (2.5). Let G denote
the adjoint of G (— G will be the div of 7-space). Then with

Y = Y(y,u,u, Gpr), (2.54)

a modified form of (2.18) will yield the previous natural conditions in 7, together with

oY ~( 0Y '

- + G(*#) =0 2.55

o+ \atew (2.55)
as an extra condition in 7 from the coeflicient of u, and no natural conditions on o. Alternatively,
with X = X(x,u, 1, Gu) (2.56)
in (2.49), another suitably modified form of (2.18) will yield

0X ~f 0X

+G (——) =0 2.57

Op o(Gu) el

asan extra conditionin7. Both (2.55) and (2.57) have the characteristic Euler-Lagrange structure
familiar in the calculus of variations. Such variational principles can subsequently be modified
to take account of boundary conditions also, in the way previously described. We consider two
illustrations of additional passive variables.

In the first illustration we suppose that a function

X(xi, Ugs ﬂ) = /u’f(xz) +5aua¢ (2'58)
is given, where the s, are assigned numbers (cf. (2.31)), the function f(x;) is a given scalar-valued

function, and g is a single additional scalar variable whose 7-space gradient is absent from (2.58).
The principle (2.23) with the 4 of (2.49) and the X of (2.58) has natural conditions

du: Lx=s in 7, Nx=T on o, (2.59)
ou: f(x) =0 in 7, (2.60)
Ox: pofjox = Lu in 7, u=~h on o, (2.61)

Here (2.60) is the present form of (2.57). Reciprocal variational principles can be obtained from

this free principle in various ways.
Now suppose that f () is a convex function such that

Af—(9f]ox) Ax > 0 (2.62)
for every non-zero Ax = x, —x_, where 9f/0x is evaluated at x_. Suppose also that x is now re-

stricted by # > 0. (2.63)
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There follow the equivalent forms (cf. (2.29) and (2.32))
MAf > pn(9f]ox) Ax, (2.64)

—pWIAf > = pt(of]ox)|  Ax (2.65)
for any g > 0 and ' > 0.

(a) equation (2.60) (b) equations (2.60) and (2.63) (¢) equations (2.69) to (2.71)

Ficure 3.

Extremum principles strengthening certain of the reciprocal variational principles just
mentioned can now be proved by integration of (2.64) and (2.65) over 7, with suitable interpreta-
tions of the integrand. If in (2.64) x_is a solution x of all the conditions, and x, = x* (say) is a
solution of (2.59) and (2.60) only, then

0 = [u[f(x*) —f(x)]1d7 > [ANAxdo,, (2.66)

if w is the actual solution value. On the other hand, if in (2.65) x_ is a solution x of all the con-
ditions, and x, = x" (say) with #" and «" is a solution of (2.60) and (2.61) only, then

0 = [p[f(*) —f(x"]dr > [u'sd7T + [kNxdo,+ [u' Tdo, — [x'Lu'dr. (2.67)
These principles are complementary and may be stated as
[kNx*do, < [kNxdo, < [x'Lutdr - [u' Tdo, — [u'sdr. (2.68)

Except for the fact that these extrema are analytic, these principles are interpretable as the prin-
cipleof maximum plastic work (2.66) and its dual (see Hill 1951, and § 3 (¢) below for more detailed
verification). But this analytic property is removed by changing the relations (2.60) and (2.63)
between f and g according to the transition from figure 3 (a) through 3(5) to 3(c). Figure 3 (c)

may be expressed as

f<0, (2.69)
u=0, (2.70)
Ju=0. (2.71)

The left-hand sides of (2.66) and (2.67) are no longer zero but non-positive, and since the extra
amounts given away are f,u f(x*) d7 < 0 and J' #if(x) dT < 0, which are in general bigger than the
second order, the extrema cease to be analytic. This argument may be contrasted with the
similar arguments based on figures 1 and 2 (which themselves suggested this approach to the
maximum work principle because of their superficial similarity with the plastic ‘stress—strain’
graph). The extra amounts given away here are from the firs¢ rather than (as previously) the second
group of terms in the convexity inequality. A uniqueness theorem for x can also be inferred from
the integrated form of the inequality

A(uofjox) Ax = 0 (2.72)

implied by (2.62) and (2.69) to (2.71).
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The second illustration of the role of passive variables contributing equations like (2.55) and
(2.57) is in a variational principle which results in the general equations of continuity, motion
and energy for the unsteady flow of a compressible inviscid fluid. The discussion of this is left
until §3 (e).

Other roles of passive variables in extremum principles are mentioned by Hill (1956), and
another approach to extremum principles is described by Ziegler (1963).

3. ILLUSTRATIONS

The purpose of this section is to present some illustrations of the variety of theories having the
analytical structure outlined in § 2. Additional illustrations, from a class of initial motion problems,
are described in §§4 to 6. Attention is confined to some of the most familiar materials, having
trivial memory properties, since the possible existence of a unified treatment such as that afforded
by §2 seems far from well appreciated even for such intensively studied solids and fluids—
specific materials are too often investigated in isolation from related developments in other
continua. The governing equations are assembled for ease of reference in table 1. There now
follows a brief explanation of the notation and context of each example. No attempt will be made
to list explicitly all the variational principles, uniqueness theorems and extremum principles
obtainable under each heading (the reader will be able to infer the approach to these, and the
statements of or restrictions upon them, by comparing table 1 with §2). However, there are
certain results whose novelty of content or treatment justify some amplification of the discussion.
For brevity we shall leave the possible presence of singular surfaces out of consideration. The
notation for each individual example is of course consistent, but the occasional use of the same
symbol in different contexts need not confuse the reader.

(a) Equilibrium problem of finite elastic strain

The notation for stress and displacement gradient in table 1 (¢) is the same as that explained in
§5 below. That is, the u; are the finite displacement components from a known reference con-
figuration and the s¥ are the current values of nominal stress. These tensor components are
defined with respect to the reference position of material coordinates 6%, which may be Cartesian
then if desired (in which case all subscripts following a comma are equivalent to partial
derivatives). The strain energy per unit reference volume is U(d;), an assigned (but not unre-
stricted) function of ‘strain’ variables d;; which are defined by (2.11) to be the displacement
gradients u; ;. The function U,(s%) is the complementary energy. Equations (2.10) are the equili-
brium equationsunder assigned bodyforce g7 per unit reference volume (the pb? of equations (5.9)),
so that we are dealing with an example of the type (2.24) in which the s, are the body force com-
ponents g/. The integrations in (2.12) ef seq. are over the region 7 with bounding surface o which
the body occupies in its reference configuration, which differs in general from the current
configuration. The contracted matrix product «Nx is u;7;5% in this case,where n is the unit normal
to o outward from .

The choice of appropriate variables for setting up this problem has been a matter of some
debate in the literature. Here we have chosen to follow Hill (1956, 19574) in using s% and u; ;,
because these correspond to the matrices x and Lu respectively which the general framework of
§2 requires. Various variational principles which flow from the resulting (2.19) in the ways
indicated have been explored by a number of authors, and some review of the literature is given
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by Truesdell & Noll (1965, §88); but the free principle (2.19) itself may be new. A principle valid
for a general class of configuration-dependent surface loadings is given by Sewell (1965, equation
(43)). Applications of the variational method to solve specific boundary value problems in finite
elastostatic strain have been given by Levinson (19654, ) and Huang (1965).

For the present problem it is unreasonable to expect that reciprocal or dual variational prin-
ciples can in general be strengthened to give extremum principles such as (2.42) and (2.44).
This is because actual material behaviour makes it clear that requirements of overall convexity
such as (2.25) would be too severely restrictive to be insisted upon over the whole range of arbi-
trary reference configurations, in conjunction with boundary conditions of assigned total load
or finite displacement on o. For bifurcation points and turning points of equilibrium load/
deflexion paths are known to exist in specific problems, so that the universal uniqueness of
finite displacement which could follow from (2.26) (with y as d;;) is ruled out by physical con-
siderations. It follows a fortiori that the convexity of the strain energy function U(dy;) itself
cannot be entertained (Hill 19574). A detailed study for arbitrary reference configurations of
uniqueness theorems ensuing when U is a convex function of variables generating a subclass of
displacement gradients has been made by Truesdell & Toupin (1963). In many problems there
does exist a limited range of (say) loading for which the finite equilibrium displacement s
unique, and no general approximation method seems yet to have been worked out for estimating
thisrange. As an indication of what may be involved consider a discrete conservative system whose
total potential energy V'is a given function V(g;, A) of n generalized coordinates ¢; whose values
can range over a domain D, and of an assignable parameter A (e.g. load). If there exists a value
A of A such that the Hessian 92V/dg; ¢, is positive definite when A < A for all ¢, in D, then the re-
sulting convexity of V(g,, A) for each such A shows that there is at most one solution ¢; of the
equilibrium equations 9V/d¢; = 0 when A < A. The special ¢;( = ¢;, say) which cause the Hes-
sian for A = A to be semi-definite need not be equilibrium points in general, although they
may be so for certain special systems (which require investigation). When they are, A may be a
good estimate of the uniqueness range, but it may not be so in the other cases. (A local investiga-
tion of equilibrium paths for discrete systems, and conditions for ¥ to be a local minimum when
the above Hessian is semi-definite, are given by Sewell, 1968 a4, & respectively). In the continuum
problem the total potential energy involves not only the strain energy but also the potential
energy of the external loads. Masur (1954, 1958, 1968) has suggested extremum principles for use
in the post-buckling (post-bifurcation) analysis of a class of symmetric structures including
statically indeterminate trusses, narrow beams, and plates. In certain cases elastic collapse
occurs under a finite ‘limit load’ which can be bracketed between classes of ‘kinetically admis-
sible’ and ‘statically admissible’ load parameters (cf. the special theorems of ‘limit analysis’
arising from the principle of maximum plastic work and its dual in §3 (¢) below).

No significance seems so far to have been attached to (2.34) to (2.36) in the present context
(butsee §§5and 6 below whereinternally constrained materials are considered). Unilateral bound-
ary conditions like (2.37) to (2.39) can be proposed for the finite displacement problem, for ex-
ample in a way analogous to the suggestions (3.1) to (3.3) for the ‘instantaneous’ boundary
value problems discussed in the next example (4).

It will be noticed that in this paper we are concerned, among other things, to investigate
uniqueness theorems and extremum principles ensuing from essentially a single definition of
convexity, namely the ‘overall convexity’ of (2.25). There are, in fact, a number of related but
not equivalent definitions of convexity and strong ellipticity. The differing effects of several of

31 Vol. 265. A,
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these definitions on uniqueness theorems and on other notions of physically reasonable response
have been explored in considerable detail for elastic materials by Truesdell & Toupin (1963) and
Truesdell & Noll (1965).

(b) Equilibrium problem of incremental elastic or plastic strain

This problem is posed in some known configuration which need not be stress-free and which has
been arrived at after a strain-history which can have been complicated and which does not require
specification for present purposes. This known current configuration is itself employed as the
reference configuration, so that the values of nominal stress s% at this instant (unlike those at later
instants) coincide with the given true stress. The body occupies the region 7 with boundary o
at this instant. We have to solve the incremental quasi-static problem in which ‘velocity’ v;
represents displacement-increment and ‘stress-rate’ §% represents nominal stress-increment
(not the same as true stress-increment unless all s% = 0). The equations Lx = s are therefore this
time —s% ; = g/, which may be regarded as the first order perturbation equations in at least a
formal perturbation scheme (cf. Sewell 1968a) expressing continuing equilibrium. Here g7 is
the assigned nominal body-force rate per unit reference volume. The superposed dot represents
differentiation with respect to any ‘perturbation parameter’ (not real time) whose mono-
tonic mathematical variation generates an ordered sequence of equilibrium states.

The incremental material behaviour is written into equations (2.2) with (2.24), where U(y)
this time is an assigned function of velocity gradients d;; = v; ; which is homogeneous of degree
two. Then the ‘rate equations’ §¢ = 9U|dv; ; are homogeneous of degree one, and Euler’s theo-
rem with (2.6) shows that U, = U = §§%v; ; numerically. The simplest case is when U(y;, ;) is a
single quadratic function in a certain class, so that (2.27) applies directly (to U as well as ¥)—
i.e. the barred quantities on the right in (2.27) are then just the coefficients of this quadratic.
Quadratics in this class emerge from stressed and unstressed elastic solids possessing a strain
energy (i.e. from the solids in (a) above), and also in problems involving hardening plastic solids
which are not unloading anywhere. Incremental behaviour of stressed elastic/plastic solids, with
the possibility of either loading or unloading in the same material element, may be represented
by quadratic functions U(v; ;) having discontinuities in their second derivatives. We refer to
Hill (1962, 1967) for a further statement of such material properties.

We can again begin with the appropriate form of (2.19), and deduce therefrom the reciprocal
variational principles of Hill (1962, §4). The uniqueness criteria and extremum principles which
ensue from the overall convexity of U(v; ;) or U,(s%) in the case of bilateral conditions on o and
in 7 are also given by Hill (1962, §§5 and 6).

Bifurcation of the elastic/plastic column under axial load provides a context in which these
variational principles for a composite quadratic U are applicable even when uniqueness is known
to fail so that the extremum principles are not valid (see Hill & Sewell 1962). An example of a
calculation employing the variational principles to investigate the range of uniquness in a com-
pressed elastic/plastic plate is given by Sewell (1963 b,1964). For an elastic solid in its unstressed
state the extremum principles reduce to those familiar in classical elasticity (sometimes called
Castigliano’s principle and its dual).

Although modification of the field equations along the lines of (2.34) to (2.36) has not been
given any significance, as in (@) above, a similar modification of boundary conditions to include
unilateral conditions like (2.37) to (2.39) can here be identified with the presence of passive con-
straints. Let ¥ = n;§% denote nominal traction-rate vector on an area element facing in the


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DUAL APPROXIMATION PRINCIPLES 337

n-direction. For a simple example suppose that over the whole of o the following conditions are
placed on the normal components of velocity and traction-rate:

n.i<o, (3.1)
n.v<e, (3.2)
(n.v—c)n.f=0. (3.3)

Here (3.1) expresses the hypothesis that in the common normal direction the passive constraining
surface can only push the body and not pullit, and (3.2) says that the body can leave but not pene-
trate the constraint which has an assigned normal velocity ¢ (which might vary with position).
And (3.3) ensures that if inequality occurs in one of (3.1) and (3.2) then equality must occur in the
other (cf. equations (4.11) to (4.13) and (5.18) to (5.20)). Suppose, in addition, that the tangential
components of v are assigned on a part o, of o (we could then speak of perfectly rough passive
constraints on o,), and that the tangential components of £ are assigned on the remaining part
oy = 0 — 0, of o (if these assigned values are zero we could then speak of perfectly smooth passive
constraints on o). The affinity of (3.1) to (3.3) with (2.37) to (2.39) is obvious, and we note that
the present form of (2.46) is satisfied (integral over o of the product of the right-hand sides of (3.1)
and (3.2) is zero).

From the overall convexity of the composite second degree functions U(v; ;) and U,(s%¥)
described above it is straightforward to show as in § 2 (vi) that the following complementary ex-
tremum principles characterize a solution of the incremental equilibrium problem under the
mixed unilateral and bilateral boundary conditions just stated:

[U.(si#*) dr — [en.#* do— [[n A (F*An)].[n A (v An)]do,
> [Uy(5) dr — [en.Edo— [[n A (iAn)].[n A (v An)]do,
=3[[é. vd7+f[n/\ (fan)].[nA (vAn)ldo,—[[nA (fAn)].[nA (v An)]do,— [en.Edo]
=[[g.v—U(v;,)]1dr+[[n A (ian)].[n A (v An)]do,
> [[g.vI = U@} )]dr+ [[n A (ian)].[n A (vt An)]do,. (3.4)

Here we have used the same system of designation as in (2.42) and in (2.44). That is, symbols
designated by * satisfy the equilibrium equations (2.10) in 7, (3.1) everywhere on o, and the given
tangential conditions on o; but they do not have to be associated with any velocity field via the
constitutive rate equations or satisfy (3.2), (3.3) or the tangential conditions on o,. Whereas
symbols designated by 1 satisfy (3.2) everywhere on o and the given tangential conditions on o,;
but they do not have to be associated with any stress-rate field satisfying (2.10), nor must they
satisfy (3.1), (8.3) or the tangential conditions on ;. And symbols without either designation
have to satisfy all the conditions for an actual solution of the boundary value problem. We have
repeatedly used the decomposition A = (A.n)n+n A (AAn) of a vector into its normal and
tangential components respectively.

The extremum principles (3.4) are new, and could obviously be extended easily to the possibly
more realistic case when the passive constraints apply on only part of o, with assigned n.£orn. v
elsewhere. We repeat that they apply to the incremental behaviour of elastic and elastic/plastic
solids. To get the inequalities we have given away not only terms like the integrated right-hand
side of (2.27) which are of second order in the ‘difference fields’, but also f n.t*n.v—c)do >0

to get the minimum principle and f n.i(n.v'—¢)do > 0to get the maximum principle. In the
31-2
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absence of a guarantee that these extra amounts are not of first order in the difference fields As¥

and Av; respectively, we are not entitled to suppose that the extrema are stationary.
Uniqueness of the solution characterized by (3.4) is assured by uniqueness theorems of the

kind described in §2 (v). For example, the overall convexity of U(v; ;) expressed in the form

[A(oU]ov;,;) Avy, ydr > 0 (3.5)

ensuing from (2.26), (2.24) and (2.11) for all pairs of distinct velocity-gradient fields is a suffi-
cient criterion for unique v; ;—and unique v; ; implies unique v; apart from a possible constant
which is often eliminated by the velocity boundary conditions (cf. Hill, 1959, equation (12));
it is easy to show using (3.1) to (3.3) and the other data that if there could be two distinct solutions
of the stated problem the integral in (3.5) would have to be non-positive. Evidently therefore
(3.1) to (3.3) could be one example of the sets of boundary conditions envisaged by Hill (1967
equation (3.4)).
(¢) Equilibrium problem of yield-point states

Attention has already been drawn to the fact that the extremum principles (2.68) may be
interpreted as the principle of maximum plastic work and its dual. This interpretation requires
the identifications listed in table 1 (¢). The continuum in question occupies the region 7 with
surface o at the considered instant. This time we use Cartesian spatial coordinates in the current
configuration, and o; is the symmetric tensor of current true stress, which must satisfy the equili-
brium equations (2.59); under assigned body forces g; per unit volume. The incremental displace-
ment components are v; with associated strain-increments €;;. The statements of (2.10) and (2.11)
for this problem, in matrix notation to illustrate (2.8) and (2.9), are therefore

Lyyoy =g and e =Ly, (3.6)
. & 1 0 0
respectively, where — Ly = Ly, = 3 é‘ki% + 3,”-—379; . (3.7)

Here (04, 0,, 0,) are the spatial Cartesian coordinates, and we have used the symmetry of o,; in
(3.6),. By contrast it was only the second part of the expression in (3.7) which was required in the
above problems (@) and (4) where the nominal stress s% and stress-rate 5 were in general unsym-
metric. The function fin (2.58) is an assigned function of stress and perhaps also position which
characterizes the local ‘strength’ of the body, for example in the generalized sense described by
Hill (1966a). In particular f(o ;) can be the yield function of a rigid/plastic body, which may be
hardening, non-hardening or softening. When f (07;) is symmetrized with respect to o;; and identi-
fied with the plastic potential the associated ‘flow rule’ takes the form (2.61),, where y is a pro-
portionality factor which does not require further specification here. The relation between the
existence or otherwise of local yield point states and of locally deforming modes is then described
by figure 3 (¢) or (2.69) to (2.71).
The general formalism may be regarded as beginning with the function

X(o, 05 1) = pof (045) + 8505 (3.8)
inserted into (2.4), thus defining the y; as the strain-increments ¢;;, these latter being related to
the displacement-increments by (2.11) in the form (3.6), (which for brevity we have employed
at the outset in the free variational principle this time). We do not need to suppose that ensuing
equations e; = 0X/doy; are invertible, so that a complementary function ¥ independent of
stress is never defined. As implied after (2.63) the uniqueness theorem and extremum principles
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are based on the alternative statements (2.29) and (2.32) of the convexity of X with respect
to the six independent components o; at each fixed . Actually such convexity is stricter than that
usually found, at least in metals, where the yield function f(o;) is commonly regarded as inde-
pendent of the hydrostatic component of stress so that > is replaced by > in (2.64) and (2.65);
but this qualification does not necessarily apply in the generalized problem stated by Hill (1966 4).

Under the boundary conditions of assigned load on o, and assigned displacement on o,
((2.59), and (2.61), respectively) the uniqueness theorem stemming from (2.72) ensures that the
stress distribution, or at least its deviatoric part, is unique in the deformable zone. This is shown
by Hill (1951), who also explains how the upper and lower bounding theorems of the so-called
‘plastic limit analysis’ are special cases of his earlier statements of the extremum principles
(2.68). The non-analytic character of these extremum principles makes it natural to ask whether
established techniques of ‘mathematical programming’ can be exploited in their applications,
and Charnes, Lemke & Zienkiewicz (1959) have expressed the static and kinematic plastic col-
lapse principles for frames as dual linear programming problems. We note that the uniqueness
theorem, involving as it does a contradiction of a convexity property with respect to stress only,
can say nothing about the uniqueness or otherwise of x or of the deformation modes; more data
are required for an examination of this question (see Hill 19574, ¢), which involves a boundary
value problem like that in example (4) above.

Collins (1968) has drawn attention to another type of passive constraint, which may be ex-
pressed in terms of the tangential components of the surface traction #; = n,0,; acting on the body
and of its velocity v, in a form reminiscent of the passive normal constraints (3.1) to (3.3). For
example, the maximum shear stress 3 [nA(tAn)] =t (say, where f is a unit vector in the un-
assigned direction of maximum shear) exerted by the constraining surface may take any non-
negative value not exceeding an envisaged assigned local yield stress ¢ > 0, but relative motion
between the constraint and the body in question, in the opposite direction to the shear, can only
take place if ¢ = ¢. When the passive constraint is fixed and rigid let — £ [nA(vAn)] = (say)
denote the tangential speed of the body. Then analytically we have

0 <<y, (3.9)
v 20, (3.10)
(ty —t)v =0, (3.11)

(cf. the ‘stiction’ of Hill 1963 a, equation (2.6)). The affinity both of these and of the earlier
passive surface constraints to figure 2 (¢) is obvious. Under suitable boundary conditions on the
normal traction and velocity (such as assigned values) on this part of the surface, and on the trac-
tion or velocity elsewhere on the boundary, the uniqueness theorem is again valid, because the
difference of any two solution pairs contributes to the surface integral arising in the integrated
left-hand side of (2.72) an amount [n A (Av An)].[n A (At A n)] which is non-positive by (3.9)
to (3.11). As we by now anticipate from the analytical structure, the maximum plastic work
principle and its dual in (2.68) can also both be generalized to include these passive constraints.
The maximum work principle maximizes f h.tdo, when v = h on o,, and f hn.tdo, when
n.v =k and (3.9) to (3.11) apply on o,. Collins (1968) interprets these results as maximizing a
‘total load’ by giving special interpretations to the assigned functions of position k and 4.
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(d) Classical dynamical problem

For perspective we mention this problem here, because up to a point it serves as the historical
prototype for the general theory of §2. In table 1(d) there are n generalized coordinates ¢,
and the real time ¢, which act as passive variables in the Legendre transformation relating
the assigned Lagrangian function L(v;, ¢;, t) to the Hamiltonian H(p,, g;,t). Here the n p,; are the
momenta, and (2.8) and (2.9) are the equations of motion of the holonomic system, and
the equations relating the v; to the generalized velocities, respectively. The operators in (2.8) and
(2.9) are defined by L,, = 8,,d/d¢t and L,; = —8,;d/d¢. The ‘boundary’ o is now just the two
end-points of a time interval 7 between two #-values, ¢ being the only independent variable. The
free variational principle (2.18) is just an extended form of Hamilton’s principle with time inte-
grand p,v; + ¢, p; — L(v;, ¢;, t) in which all of the p,, v;and ¢; are treated as unrelated variables at the
outset. Comparatively little is said in the literature about the uniqueness theorems, extremum
principles, etc., which further restrictions would produce.

(¢) Equations of inviscid fluid mechanics

When we consider the class of all materials for which the stress is derivable from a strain energy,
and in particular (hyper-)elastic solids and perfect fluids, it is clear that this strain energy is
going to appear in some form in any variational principle which leads to the balance equations
of linear momentum, and that such principles will be related to Hamilton’s principle (see, for
example, Truesdell & Toupin, 1960, §§232A, 236 A). This will give an indication of the function
Y to be employed in (2.16), but the particular purpose in hand will also require a decision whether
the region 7 should best be chosen as the union of an (arbitrary) time interval with, for example,
some fixed (perhaps previous) reference volume or with the current space occupied by the material.
In Hamilton’s principle itself, and for the special (equilibrium) class of solutions sought in § 3 ()
the reference volume is appropriate. For practical purposes in problems involving motion it is
often the current spatial coordinates which are more convenient to use and, in addition, we may
then wish the variational principle to yield other equations such as the equations of continuity
and energy, in addition to the equations of linear momentum. The strain energy may then be
identified with the specific internal energy or free energy in certain well-defined circumstances
(see, for example, Truesdell & Toupin 1960, §256 A). In such problems an approach too closely
tied to Hamilton’s principle can become very cumbersome, as several investigators have remarked
(notably Seliger & Whitham 1968), and it is by no means obvious how the integrand in (2.16)
should be completed in order that (2.18) should furnish the general equations.

Our purpose here is not so much to seek any canonical expression of the general equations, but
rather to point out another special class of problems (in addition to those of § 3 (2)) in which the
formalism of § 2, and in particular the existence of extremum principles strengthening the varia-
tional principles, can be verified. This class of problems concerns the steady flow of perfect fluids.

As the starting point we suppose that the internal energy e per unit mass is given as a function

€ = €(n,p) (3.12)

of density p > 0 and entropy # per unit mass. Definitions of thermodynamic pressure

= —0¢/d(1/p) and of velocity of sound ¢ given by ¢ = dp/dp are then introduced as functions

of 7 and p. Some universally valid functional inversions then lead to the following results for a
compressible fluid. We can express p as an assigned function

p=p@X) (3.13)


http://rsta.royalsocietypublishing.org/

|
e A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DUAL APPROXIMATION PRINCIPLES 341

2

such that %zp, %:—pﬁ, Z—éz%:%. (3.14)
Here 6 > 0 is absolute temperature, and y having the value of € +p/p is the enthalpy of unit
mass. The independent variables in the differentiations in (3.14) are # and y only, so that (3.14)
may be regarded as expressing p, 0 and ¢ as assigned functions of # and . For simplicity we
shall consider below only the homogeneous case, in which the function (3.12) is the same function
for each fluid particle.

We next choose 71in (2.12), (2.16) ¢t seq. to be the region of space occupied by the steady motion
under discussion, and we investigate the possibility that a suitable function Y shall have the form

Y(p,n, K) = ple(n, p) —K]. (3.15)

Here K is to be regarded as a function of 9 and of certain other variables which we have to choose
in a way which will allow us to get the equations of continuity, energy and motion from (2.18).
Since more groups of equations are sought than in the other problems illustrated in table 1,
we expect that a form of type (2.54) might result, in which several passive variables x and per-
haps their gradients Gu will appear; the corresponding extra groups of equations will then emerge
from natural conditions like (2.55). The choice (3.15) reflects the indication from Hamilton’s
principle that the mass-integrand will contain € for motions with no thermodynamic constraints,
together with ‘something else’ K. If p does not appear explicitly in K or in the x, y and u of (2.16),
then as shown in Sewell (1963 a, equation (33)) one of the natural conditions of (2.18) is

dp: Y =—p. (3.16)

Thus the value of (3.15) wherever (3.16) holds is that of minus the thermodynamic pressure,
and the value of K = e+ p/p will then be that of y itself. For an incompressible fluid we may begin
with (3.15) but with p regarded as a fixed parameter so that dp = 0 and (3.16) does not arise.

Let us suppose that (3.16) and the consequent K = y are assumed at the outset. The starting-
point now is therefore the function

Y(p,x) = =p(n,x) (3.17)

defined by (3.13). Hamilton’s principle also suggests that an appropriate mass integrand will
contain 43, where v is fluid velocity, so in view of (3.15) and K = y we write
X =—3+h (3.18)
where £ is a new variable.
It is shown by Sewell (1963 a) that a Legendre dual transformation can be constructed begin-
ning with (3.17) and (3.18), treating the (Cartesian) components v; of v as active variables and
7 and £ as passive. The values of the derivatives of (3.17) with respect to the active variables are

P _ Fp o_p
Tov, P T v ov; ¢

(635 — v;0;). (3.19)

The transformation is reversible except at transonic points where v = ¢, and the function dual
to —p has the value of p + pv% This leads to a free variational principle like (2.18) from which
emerges a ‘Clebsch representation’ in the form

v =Vo+aVi+ SV, (3.20)

together with the equation of continuity, the equation of energy, the Bernoulli integral that A
be constant on streamlines, and the Crocco—Vaszonyi form of the equations of motion without


http://rsta.royalsocietypublishing.org/

/|
e A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

342 M.J.SEWELL

body forces (on the supposition that p is also the mechanical pressure). It is of interest that the
statement of the free variational principle in this case of steady motion can be reasonably per-
ceived on the basis of the expected forms of the desired resulting equations, and it does not need
hindsight derived from other sources (the same cannot be said of the corresponding principle for
unsteady motion, as a study of the literature makes plain). In (3.20) ¢, « and £ are functions of
position which are introduced as Lagrangian multipliers in the free principle, and V is the spatial
gradient operator. Ensuing reciprocal principles are also proved by Sewell (1963 @) under suitable
boundary conditions permitting a form of (2.19), and for homentropic ( = constant), homener-
gic (h = constant) steady flows a uniqueness theorem and dual extremum principles are proved
which are valid when the flow is subsonic in an overall sense. These extremum principles rest
on the facts that —p(v;) and its dual are convex functions when v < ¢, as may be inferred
from (3.19), in (2.28). The principles are always valid in the incompressible case, as may be
verified by beginning with (3.15) with fixed p and with K = & — 32

The precise correspondence of the analysis in the paper just mentioned to that of § 2 requires
the modifications implied in column (¢) of table 1. These modifications are purely formal except
that the Clebsch representation has to be assumed (in effect), instead of being allowed to emerge
naturally as it does in the paper. For instead of (3.18) we take

X =h—%(y+aVh+pVy)? (3.21)
in (3.17), so that the resulting function Y is of type (2.54), namely
Y(y, b, 0, 5 VR, V1) = =p(0, k= 3(y +aVh+ V7)?). (3.22)

The value of & in the table 1 (¢) is just the ‘mass flow’ pv (see (3.19),), Lx = 0 represents the con-
tinuity equation, and Lu is V¢ with ¢ not appearing explicitly in ¥ so that s = 8Y/¢ = 0. In these
terms the free principle (14) of Sewell (1963 a) exemplifies (2.18).

It is possible to generalize the Legendre transformation and free variational principle to cover
the case of unsteady flows also. For example, it is clear from Seliger & Whitham (1968, equation
(40)) that a free variational principle may be obtained by replacing (3.18) and (3.20) by

x =H(a,ht)—5(Vop+aVh+ V)2 — (0¢ |0t + adh|ot+ foy[ot), (3.23)
where S is a known function of the indicated variables having the properties

Di  0# Da oH
D~ 4 DIk (3.24)
with D/D¢ = 9/dt+ v.V; and by taking 7 to be the union of an (arbitrary) time interval with the
(varying) spatial region occupied by the fluid during that time. For the verification that the
equations of continuity, energy and motion ensue we refer to Seliger & Whitham (1968), who
also treat the general motion of an elastic solid from the same viewpoint. The detailed analysis
of unsteady motions, and in particular the question whether any of the variational principles
can be strengthened to provide extremum principles, would require too extensive a digression
to be included here. The reader may refer to the review article by Serrin (1959) for a statement of
the position which studies of variational principles in fluid mechanics had reached up to that
time.

Seliger & Whitham were apparently unaware of the author’s 1963 paper, and they do not
mention the central roles of the Legendre transformation and of convex functions. In fact they
are not concerned with extremum principles, most of their emphasis being on variational
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principles for perfect fluids (and to a lesser extent elastic solids). What seems to be their
search for reciprocal principles (cf. §2 (iii) here) ends in a rather inconclusive examination of a
theorem of Pfaff. Nevertheless, Whitham (1967) has applied variational methods to the approxi-
mate solution of problems in water waves (see also Luke (1967)).

It is to be recognized that unless a variational principle can be strengthened to produce an
extremum principle, there is no objective assurance that an approximate solution based upon it
will be better than that obtainable from some other ‘averaging’ principle or ad koc approxima-
tion. Examples of such situations in the theory of metal working processes and in plastic column
bending, in which an averaging principle based on the virtual work principle is compared with a
variational principle, are discussed by Hill (1963 2) and Hill & Sewell (1962) respectively.

The differences between the principles in this subsection and in §3(a) are noteworthy. For
example, (2.10) has here the role of the continuity equation and involves spatial coordinates,
whereas (2.10) has there the role of equilibrium equations and involves material coordinates.
It would be interesting to know the results of a full examination of the situation in which extre-
mum principles can be proved for materials having a strain energy, since the special examples
brought together here and in § 3 (a) display little direct connexion apart from the common mode
of approach given in §2.

We have hardly mentioned boundary conditions, which might be included by augmentation
as in the transition from (2.18) to (2.22). However, to illustrate the range of problems in which
variational methods have actually been used in fluid mechanics, we cite the applications by
Moiseev & Petrov (1966) for internal flow problems, by Fiszdon (1962) and Lush & Cherry
(1956) for external flow problems, by Krajewski (1963) to the flow through turbomachinery, and
the work of Luke and Whitham mentioned above on problems involving a free surface. That such
methods may nevertheless not have been fully exploited is suggested by the fact that the necessary
general theorems have not yet been fully stated or explored, as this subsection shows.

(f) Finite-dimensional initial motion problem

This problem is explained in §4, and summarized in table 1(f).

(g) Initial motion problem in a continuum

This problem is explained in §5, summarized in table 1 (g), and illustrated for the incompres-
sible Newtonian viscous fluid in §6. The practical viability of the new principles proved in §§5
and 6 remains to be tested.

(k) Other examples

Other illustrations of problems having the structure outlined in §2 are readily found. Hill
(1956) indicates a number of these, with emphasis on the equilibrium problem (§3 (a) or §3 (4))
for a variety of material properties. The extremum principles which bound measures of drag in
slow flow of the Newtonian viscous fluid (Hill & Power 1956) provide one example. The convex
function there is the dissipation, which is a quadratic function of strain-rate formally similar to
the strain-energy of the classical isotropic linear elastic solid. Recent generalizations for the in-
cremental equilibrium problem cover material properties which are inhomogeneous in a dis-
continuous fashion, as in multiphase solids (Hill 1963 4,¢) and aggregates of crystals (Hill 1966 ).

Gladwell & Zimmermann (1966) have produced reciprocal variational principles for a class
of acoustic and structural linearized free vibration problems, and Gladwell (1965) has suggested

32 Vol. 265. A.
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that the finite element method may then be employed to generate approximate solutions. The
time-dependence is assumed to be exponential (harmonic) and removed at the outset, so that
the variational principles characterize a time-independent problem (being to that extent like the
problems (a) and () or (f) and (g) here). It is a simple matter to express their equations in the
form of § 2. It may then be shown, for example, in the coupled problem of air vibrating in a rigid
cavity closed on one side by an elastic membrane, that all the governing equations (and in par-
ticular their reciprocal principles) are obtainable from a free variational principle similar to
(2.19) here. They say nothing about uniqueness theorems or extremum principles.

The isotropic diffusion equation V3¢ +a2¢p = b can be put into the form of (2.47) and (2.48)
by introducing the subsidiary variable # = —V¢@. One may then apply the theory of §2 (vii) to
the function

X(¢,u) = tu?—1a?p?+ b, (3.25)
which has the requisite saddle shape mentioned.

Clearly it is not difficult to find cases where the full potential of §2 has not been realized.
Other contexts requiring investigation are magnetofluiddynamics and viscous flow with signi-
ficant inertia terms, in both of which fields variational principles have been employed (see,
for example, Cap & Miiller (1967), and Schecter (1966), respectively). .

The optimum design of structures is an active field which is a little removed from the spirit
of this paper, but it seems worth mentioning briefly one or two points of contact. The variational
principles and extremum principles of §§3 (a), () and (¢) carry the implicit assumption that the
layout or distribution 7 of the material is specified, and in that context are therefore fundamental
tools of structural analysis. Structural design is the problem of varying the layout to suit some speci-
fic optimizing purpose, and Prager & Taylor (1968) illustrate how such variational principles
may be extended to structural design for minimum weight. Optimum design problems often
reduce to mathematical programming problems which may be linear (see, for example Hemp
& Chan 1966), or non-linear (see, for example Chan (1968) or Pope (1968)), but the associated
unilateral constraints can arise from considerations other than those mentioned in this paper.

4. FINITE-DIMENSIONAL INITIAL MOTION PROBLEM

To illustrate the theoretical structure of §2 in the purely algebraic case we generalize some
results recently obtained by Moreau (19664). The problem concerns a mechanical system whose
typical particle has a position vector r which may be expressed with respect to a fixed background
reference frame as a given function

r = 1(gy1) (4.1)

of n+m generalized coordinates ¢; and the time . The system is subject to m kinematical restric-
tions (not necessarily holonomic) of the form

Ayifs+ B, =0 (a=1,....,m),

where Ay =A,(q5t) (j=1,...,n+m), (4.2)
B, = B,(4;,1),

are assigned functions of the indicated variables. The n +m equations of motion are

d (8T) oT

ailsg )~ g~ QA = 0 (4.3)
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if the constraints are workless in the usual sense implied by the derivation from D’Alembert’s
principle. Here the A, are m Lagrangian multipliers associated with the constraints, the general-
ized forces Q; = Q;(¢;, §s» t) are assigned functions of the indicated variables, and the kinetic
energy T = T(q;, §;,t) has the form

T = 3G:G;055(q1 1) + G:05(qr> 1) + ¢ (g 1) (4.4)
which (4.1) implies. We assume that the (n+m) x (z+m) matrix

a;; is positive definite. (4.5)

Suppose now that, instead of seeking the full solution ¢, = ¢;(¢), A, = A,(¢) of (4.2) and (4.3)
for all time ¢, we wish to solve the following initial value problem. At some given instant the values
of the generalized displacements ¢; and velocities ¢; are supposed known (and satisfy (4.2)).
What are the values at that instant of the generalized accelerations §; and of the A, (or at least of
the reactions A, 4,;)? The n+ 2m governing equations of #is problem have the form

Aoi s = Sa (4.6)
A §;—2z; = Ay A, (4.7)

from (4.2) (differentiated) and (4.3) respectively. Here the m terms s, and the n+m terms z; are
known in terms of the given data, being assigned functions of the ¢;, §;, t. Evidently (4.6) and (4.7)
are examples of (2.8) and (2.9) respectively, with (2.15) and (2.24), and the entire theory of §2
may be applied to this problem by adopting the correspondences listed in column ( f) of table 1.

Since (2.28) is satisfied by the assumption (4.5), the statement of the ensuing general theorems
for this problem may be written down at sight by inserting these correspondences into §2, and
dropping the 7-integrations and all reference to boundary terms. Therefore we shall not pause to
list the detailed results. However, some characteristic features of this problem deserve comment.

(i) X and Y here are single quadratics so that the uniqueness and extremum principles can
be proved by elementary inequalities without a direct reference to convexity—but such an ap-
proach obscures the fact that the general procedure of §2 applies just as well to non-quadratic
convex functions. For example, in the steady incompressible case of §3 (¢) quadratic convex
functions appear in the proof of Kelvin’s theorem of minimum kinetic energy, but in the steady
compressible case the uniqueness and extremum principles depend on non-quadratic functions
which are convex when the flow is subsonic (Sewell 1963 ).

(ii) The uniqueness theorem guarantees unique y; and therefore unique acceleration §;, but
the associated A, are not necessarily unique until we make the extra assumption that the con-
straints are independent in the sense that at least one of the m x m minors of the m x (n +m) matrix
A, is non-zero (thus permitting m of the linear equations (4.7) to be solved for the A, in terms of
the unique y;). Also, the reductio ad absurdam proof of the uniqueness of §; and y, does not, of itself,
guarantee the existence of a solution—the same remark applies to problems involving linear
differential operators. In this problem, however, we may regard (4.6) and (4.7) as linear equations

whose matrix expression is [ a A ] [q] [z]

a7 o, |la] s (4.9)

in the obvious notation. It may be shown via the Laplace expansion (used twice, down the last
m rows and columns), and the properties of compound matrices, that the determinant of co-
efficients in (4.9) is non-zero when (4.5) holds and at least one of the m x m minors of A is non-
zero. Hence a uniquesolution of (4.9) for [¢ A]7 exists becauseitcan be found by the direct method.
32-2
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(iii) The extremum principle (2.42) for the present case with bilateral conditions is of course
often called Gauss’s principle of least constraint, since U,(x*) = §a;§¥§F — z,g¥ is minimized
among the solutions of (4.6). The lower bound in the dual principle (2.44) is a non-homogeneous

quadratic Aysy—3ait (WA +20) (WA g +2) (4.10)

in the A} (which are unrestricted in the bilateral case so far considered), and may therefore
be improved by maximizing with respect to the AL,
(iv) The form of (2.34) to (2.36) in the present case is

Aaqu Z So (4'11)
A, 0, (4.12)
/\oc[Aoch'j—soc] = 0, (4.13)

and a graphical representation like that of figure 1 () could be given. When these are used in
place of (4.6) the §, are still found to be unique, and the statement of extremum principles are
unchanged (except that in the lower bound (4.10) the A} must now satisfy A} > 0). However,
the analytic character of the extrema no longer holds in general.

(v) The foregoing theory applies in particular when the system is subject to holonomic con-
straints which for all time may be either

» (a) bilateral f,(g;¢t) =0, (4.14)
or (b) unilateral f,(g;%) = 0. (4.15)
In either case we have 4, = & B, = Ya (4.16)

in (4.2) and subsequently. At the instant of setting the initial value problem the given data are
assumed consistent with (4.14) and (4.2) (i.e. df,/d¢ = 0) then, in both bilateral and unilateral
cases. But (4.15) leads to (4.11) (i.e. d2f,/d#? > 0) at the given instant, while (4.14) leads to (4.6)
then. Equations (4.12) associate a conventional sign with the reactions associated with the
surfaces of constraint, while (4.13) ensures that if the system moves away from any such passive
boundary (so that > 0 then applies in (4.11)) the associated A, vanishes. Moreau (19664) has
examined the initial value problem for the holonomic unilateral case (4.15) and he asserts that
the uniqueness theorem and (generalized) Gauss principle may be derived from Kuhn and
Tucker’s theory of multipliers in nonlinear programming. The characterization of a passive
boundary in the present problem may be contrasted with that described in the ‘quasi-static’
problem of §3(5).

5. INITIAL MOTION PROBLEM IN A CONTINUUM

We are concerned here with uniqueness and extremum principles associated with an initial
value problem for certain continuous media, which is the analogue of the finite-dimensional
problem discussed in §4. Material coordinates 0%(i = 1,2, 3) are assigned to the particles of
the medium, and in any particular configuration these ¢ may be expressed in terms of a back-
ground frame of fixed rectangular Cartesian coordinate planes. The inverse of such expressions
for some chosen ‘reference configuration’ may be summarized by writing

r = r(0Y), (5.1)
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where r(6) is the position vector, referred to the Cartesian frame, of the typical particle in the
reference configuration. Consequent base vectors for the reference configuration will be denoted
by g; = 0r/90" and g%, and the medium is supposed to occupy a volume 7 with area o then.
Denote the displacement from the reference configuration to some ‘current’ configuration after
(real) time ¢ by

u = u(04t) = u'g,, (5.2)
so that u(60% 0) = 0 and the new position vector is u + r = R(0%t) (say).

Itis possible to envisage a very general class of non-holonomic kinematical constraints described
by nonlinear assigned functions of , r, u, 11 ( = particle velocity 0u/0t|i_qons;.) and their deriva-
tives with respect to the 6%, as in Truesdell & Toupin (1960, equation (237.10)). To illustrate
our theory we shall consider for simplicity only those constraints which have the property

Aocijdj,i-'_Ba = 0) (OL = 1’ ’m) (5'3)

in which the 4,7 and B, are assigned functions of ¢ and of u and its §*-derivatives (the subscripts
following a comma indicate covariant differentiation using the reference base vectors: e.g.
i ; = 8;.01/00%). Conditions (5.3) may arise, for example, as the time-differentiated form of
holonomic constraints such as

or ou
Ca(",a—e“i, 3—02,15) =0, (5.4)
. . oC oC
i e = L 5.5
and in such a case A4, 3u$_,i: @ Py (5.5)

On the other hand, (5.3) may be assigned directly as non-holonomic constraints and regarded as

or ou ou
Ca(rsbﬁ,gé}:a—g{’t) = 0) (5'6)

a special case of the type

in which the functions C, are linear in the velocity gradients but not integrable, so that they could
not be derivable from (5.4).

Now let p = p(6%) be the density in the reference configuration, and let the current assigned
body-force per unit mass be b = b (6%, ¢) = b'g,, so that the 5® are ‘nominal’ components—i.e.
components referred to the base vectors as they were in the reference configuration. Likewise
let the current stress vector per unit reference area on an area element which had unit outward
normal n = n,g%in the reference configuration be t = #*g,. Also let

S = siig, g, (5.7)
be the (unsymmetric) tensor of current nominal stress (Hill 19574). Then Cauchy’s formula takes
the form

H=mnsY on o (5.8)
and the differential equations expressing the current balance of linear momentum are
s9 4+ pbl = pid in T, (5.9)
We consider any material in which 5% has the form
s =rii—p AW (o summed), (5.10)
in which 7% is calculable with the aid of constitutive equations, and the p, are m multipliers un-
known in advance and sought from the boundary value problem as functions p,(6% ¢). (These

32-3
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multipliers will need to be tensors p, if the original equations of constraint are tensorial, i.e.
C, = 0, instead of scalar functions as in (5.4) and (5.6).) The ‘virtual work’ of the stresses for
any differentiable vector field n = #,;g7 is sy, ;. Now for those special n which are interpretable
as the difference between any two velocity fields which satisfy the constraints (5.3) everywhere at

a given instant we have ‘
A“i"')]j’i = 0. (5.11)

The virtual work of the stresses for such v therefore contains no contribution from the ‘reactions’
P A, by (5.10) and (5.11), and in this sense the internal constraints (5.3) in a material of type
(5.10) are said to be smooth and the associated reactions workless.

We now define an initial motion problem in the current configuration. The current configura-
tion and velocity distribution are supposed known, together with any other properties of the
strain history entering 7%, so that this part 7% of the stress is regarded as assigned at the considered
instant. These given dataarealso supposed to satisfy the constraints (5.3) (and (5.4) where defined)
at the current instant. It follows from (5.3) (differentiated) and (5.9) with (5.10) that the ac-
celeration at the given instant must satisfy

Aaijﬁ]’,b = ‘S‘OL (5'12)
and pu] ~2 = - (paAocij),i, (5°13)
where S =— (B, +45u;;) and 27 =1+ pbi (5.14)

are known from the given data. This problem for the current values of the acceleration and
reactions, when augmented by the boundary conditions described below, can be approached by a
direct application of the ideas described in § 2. The required correspondences are listed in column
(g) of table 1, from which it is clear that (5.12) and (5.13) are the present form of (2.8) and (2.9)
respectively. The governing Hessian in (2.28) is just p times the metric tensor g;;, from which it is
clear that the quadratic functions X and Y are convex.

Comparing table 1(g) with (2.34) to (2.36) suggests that in place of the bilateral conditions
(5.12) one might envisage unilateral conditions of the type.

ATy ;= S, (5.15)
ba =0, (5.16)
P[4 15— 5,] = 0. (5.17)

The uNx of table 1(g) suggests that the Nx of (2.21) or (2.37) be taken here as the m x 1 matrix
— A, nyii;. Associated unilateral boundary conditions on a part 7, of o would then be

Aaij”iﬁj < —7;; (5 18)
Do =l (5.19)
(ha _.poc) (Toc_'_Aaijniiij) =0, (5.20)

where each 7, and each £, is an assigned distribution of scalars on . Corresponding bilateral
boundary conditions would be of the type

p, = h, onapart . o, of o, (5.21)

— A nii; =T, onapart o, of o. (5.22)

a
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Here 4, and T are assigned distributions on o, and o, respectively, and o, + 0, + 0, = o to be
definite.

We may now employ the uniqueness theorems of § 2 (v) to prove that the problem defined by
(5.13) with (5.12) or (5.15) to (5.17) in 7, subject to boundary conditions such as (5.18) to (5.22)
on o, has a unique solution for the acceleration ii. Moreover, the extremum principles (2.42)
and (2.44) hold, and these extremum principles are complementary provided

[k, T,do, < 0 (5.23)
by (2.46). The principle (2.42) minimizes
f[%pii* LUF — g U dr + f/zaAa” ngif d(o, +0,), (5.24)

and it may be regarded as a generalization of the ‘ principle of extreme compulsion ’ (see Truesdell
& Toupin 1960, §237) to include unilateral conditions. The dual principle (2.44) maximizes

Jloatt = 51— (0240, 01 - (4249, A g dr+ [Tpid(o 400, (5.29

Asin the case of (4.10) the maximum can be improved because it is a non-homogeneous quadratic
in the pi.

6. EXAMPLE: INCOMPRESSIBLE NEWTONIAN FLUID

For an example of §5, suppose the only constraint is that of incompressibility. Then m = 1,
we can drop the a subscripts, and (5.4) is the zero difference between the values of the scalar triple
product [(dR/96") (0R[06) (0R[06%)] in the current and the reference configurations. Suppose
further that we pose the initial value problem in the reference configuration itself. There is then
no distinction between nominal stress and the symmetric true stress, and we can without loss
of generality introduce the further simplication that the material coordinates #¢ coincide with
rectangular Cartesian spatial coordinates at this instant. The expression of (5.3) at this instant
is then merely the equation of continuity

l't]’] = 0. (6.1)

If the material is a Newtonian viscous fluid its constitutive equations now take the familiar
form Sij = 24— POy, (6.2)
which is an example of (5.10) in which p is the mechanical pressure, p the viscosity and

€y = 5(€;,;+1;,) the strain-rate, so that 7 = (i, ;+1, ;).

‘The incompressibility constraint is smooth in the sense specified by (5.11).
The conditions (5.12) and (5.13) now take the form

ij; =s where 5= iy, (6.3)

pij—z; = —p; where z; = pi; ;;+ pb;. (6.4)
We recall that the current configuration is supposed known and is in this example being used
as the reference configuration, and that the velocity distribution # is supposed known and to
satisfy (6.1). These facts have been used in arriving at the stated forms of s and z;.

We may regard (6.3) as a requirement that (6.1) shall be satisfied not only at the instant ¢ = 0
in question but also at the immediately following instant £ = 0 4. In terms of time-derivatives
evaluated at a given place the acceleration has the property

ou

u= a—t+u.Vu. (6.5)
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Therefore, since # is known and satisfies V.4 = 0, the initial value problem for i could alter-
natively be posed as a problem for 912/9¢, in which (6.3) would be replaced by

V.[61)2f] = O. (6.6)

Therefore, whatever the given 7%, when the only constraint is incompressibility the problem only
has content for unsteady flows, whose development might be followed iteratively—i.e. by re-
posing the problem after each of a series of time increments.

Appropriate bilateral boundary conditions would be to assign the values of p or n.ii at each
point of the boundary o, as (5.21) or (5.22) show. Then the initial value problem has a unique
solution for ii, and Vp is then also unique from (6.4). Hence the distribution of p is uniquely deter-
mined at the given instant if there is at least one boundary point where it is assigned. Associated
complementary extremum principles may be inferred from (5.24) and (5.25).

Moreau has proposed (1964, 19665, 1967), in the context of an incompressible perfect fluid
(# = 01in (6.2)), that a definition of the onset of cavitation within the fluid can be given by re-
placing (6.3) by the corresponding unilateral form indicated by (5.15) to (5.17), namely

iy ;= 5, (6.7)
P30, (6.5)
plé ;—s] = 0. (6.9)

Here p is to be regarded as the excess of the actual pressure over a known vaporization pressure,
the gradient of the latter providing an extra term in the known quantity zin (6.4). Then cavita-
tion can only begin (inequality in (6.7)) within the fluid if p = 0 in (6.8), and not if p > 0, as
(6.9) shows. Associated unilateral boundary conditions on a part o, of the boundary of the fluid
are given by (5.18) to (5.20) as

n.ii< - T, (6.10)
p=h (6.11)
(h—p) (T+n.ii) = 0. (6.12)

Here T is interpretable as an assigned inward acceleration of the retaining wall, and with % set
equal to zero (since p is the excess pressure), (6.12) ensures that a cavity cannot appear at the wall
unless the vaporization pressure is attained there. The previous uniqueness theorem and comple-
mentary extremum principles still apply for suitable combinations of the previous bilateral con-
ditions with the unilateral conditions (6.7) to (6.12), as § 2 shows. That the extremum principles
are complementary follows because (5.238) is satisfied with 4 = 0.

Moreau obtains the uniqueness theorem, extremum principles and certain other results for
the perfect fluid (# = 0) with unilateral constraints of type (6.7) to (6.12), but from a rather dif-
ferent viewpoint. Moreau makes the point that if the solution of a problem posed with purely
bilateral constraints is found to violate (6.8) in a certain region, this is no reason to conclude that
cavitation (as he defines it) must begin through that region. The reason is simply that the problem
posed with unilateral constraints is a different mathematical problem. He illustrates this point
by a simple finite-dimensional initial motion example (1967). -
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